domingo, 29 de abril de 2007

Laboratorio #2 - Aplicación de los sensores

Sensor

Un sensor es un dispositivo que detecta, o sensa manifestaciones de cualidades o fenómenos físicos, como la energía, velocidad, aceleración, tamaño, cantidad, etc. Podemos decir también que es un dispositivo que aprovecha una de sus propiedades con el fin de adaptar la señal que mide para que la pueda interpretar otro elemento. Como por ejemplo el termómetro de mercurio que aprovecha la propiedad que posee el mercurio de dilatarse o contraerse por la acción de la temperatura. Muchos de los sensores son eléctricos o electrónicos, aunque existen otros tipos. Un sensor es un tipo de transductor que transforma la magnitud que se quiere medir, en otra, que facilita su medida. Pueden ser de indicación directa (ej. un termómetro de mercurio) o pueden estar conectados a un indicador (posiblemente a través de un convertidor analógico a digital, un computador y un Display) de modo que los valores sensados puedan ser leídos por un humano.
A continuación se indican algunos tipos y ejemplos de sensores electrónicos:

*Sensores de temperatura: Termopar, Termistor
*Sensores de deformación: Galga extensiométrica
*Sensores de acidez: IsFET
*Sensores de luz: fotodiodo, fotorresistencia, fototransistor
*Sensores de sonido: micrófono
*Sensores de contacto: final de carrera
*Sensores de imagen digital (fotografía): CCD o CMOS
*Sensores de proximidad: sensor de proximidad


Por lo general la señal de salida de estos sensores no es apta para su procesamiento, por lo que se usa un circuito de acondicionamiento, como por ejemplo un puente de Wheatstone, y amplificadores que adaptan la señal a los niveles apropiados para el resto de la circuitería.


Selección de los Sensores en la automatización

La selección se basa en la decisión sobre cual es el sensor más adecuado. Esto depende del material del objeto el cual debe detectarse. Si el objeto es metálico, se requiere un sensor inductivo. Si el objeto es de plástico, papel, o si es líquido (basado en aceite o agua), granulado o en polvo, se requiere un sensor capacitvo. Si el objeto puede llevar un imán, es apropiado un sensor magnético.

Para elegir un sensor adecuado se deben seguir estos cuatro pasos:

1) FORMA DE LA CARCASA
2) DISTANCIA OPERATIVA.
3) DATOS ELECTRÓNICOS Y CONEXIONES
4) GENERALIDADES


Tipos de sensores

Detectores de ultrasonidos

Los detectores de ultrasonidos resuelven los problemas de detección de objetos de prácticamente cualquier material. Trabajan en ambientes secos y pulverulentos. Normalmente se usan para control de presencia/ausencia, distancia o rastreo.


Interruptores básicos
Se incluyen interruptores de tamaño estándar, miniatura, subminiatura, herméticamente sellados y de alta temperatura. Los mecanismos de precisión se ofrecen con una amplia variedad de actuadores y características operativas. Los interruptores de Sensores de Control son idóneos para aplicaciones que requieran tamaño reducido, poco peso, repetitividad y larga vida.

Interruptores final de carrera
Sensores de Control ofrece la línea de interruptores de precisión de acción rápida más avanzada del mundo para una amplia gama de aplicaciones. Las versiones selladas son estancas a la humedad y otros contaminantes. Los modelos antideflagrantes están diseñados para uso en lugares peligrosos.

Interruptores manuales
La amplia selección de productos incluye pulsadores, indicadores, manipulados, balancines, selectores rotativos y conmutadores de enclavamiento. Estos productos ayudan al ingeniero con ilimitadas opciones en técnicas de indicación visual, actuación y disposición de componentes. Muchas versiones satisfacen especificaciones militares.

Productos encapsulados
Diseños robustos, de altas prestaciones y resistentes al entorno o herméticamente sellados. Esta selección incluye finales de carrera miniatura, interruptores básicos estándar y miniatura, interruptores de palanca y pulsadores luminosos.

Productos para fibra óptica
El grupo de fibra óptica está especializado en el diseño, desarrollo y fabricación de componentes optoelectrónicos activos y submontajes para el mercado de la fibra óptica. Los productos para fibra óptica son compatibles con la mayoría de los conectores y cables de fibra óptica multimodo estándar disponibles actualmente en la industria. También se pueden ofrecer productos bajo especificación del cliente; son productos estándar con pequeñas variaciones para cumplir requisitos especiales. Se desarrollan continuamente nuevos productos.

Productos infrarrojos
La optoelectrónica es la integración de los principios ópticos y la electrónica de semiconductores. Los componentes optoelectrónicos son sensores fiables y económicos. Se incluyen diodos emisores de infrarrojos (IREDs), sensores y montajes.

Sensores para automoción
Se incluyen sensores de efecto Hall, de presión y de caudal de aire. Estos sensores son de alta tecnología y constituyen soluciones flexibles a un bajo coste. Su flexibilidad y durabilidad hace que sean idóneos para una amplia gama de aplicaciones de automoción.

Sensores de caudal de aire
Los sensores de caudal de aire contienen una estructura de película fina aislada térmicamente, que contiene elementos sensibles de temperatura y calor. La estructura de puente suministra una respuesta rápida al caudal de aire u otro gas que pase sobre el chip.

Sensores de corriente
Los sensores de corriente monitorizan corriente continua o alterna. Se incluyen sensores de corriente lineales ajustables, de balance nulo, digitales y lineales. Los sensores de corriente digitales pueden hacer sonar una alarma, arrancar un motor, abrir una válvula o desconectar una bomba. La señal lineal duplica la forma de la onda de la corriente captada, y puede ser utilizada como un elemento de respuesta para controlar un motor o regular la cantidad de trabajo que realiza una máquina.

Sensores de efecto Hall
Ver sensores de posición de estado sólido.

Sensores de humedad
Los sensores de humedad relativa/temperatura y humedad relativa están configurados con circuitos integrados que proporcionan una señal acondicionada. Estos sensores contienen un elemento sensible capacitivo en base de polímeros que interacciona con electrodos de platino. Están calibrados por láser y tienen una intercambiabilidad de +5% HR, con un rendimiento estable y baja desviación.

Sensores de posición de estado sólido
Los sensores de posición de estado sólido, detectores de proximidad de metales y de corriente, están disponibles en varios tamaños y terminaciones. Estos sensores combinan fiabilidad, velocidad, durabilidad y compatibilidad con diversos circuitos electrónicos para aportar soluciones a las necesidades de aplicación.

Sensores de presión y fuerza
Los sensores de presión son pequeños, fiables y de bajo coste. Ofrecen una excelente repetitividad y una alta precisión y fiabilidad bajo condiciones ambientales variables. Además, presentan unas características operativas constantes en todas las unidades y una intercambiabilidad sin recalibración. Sensores de Control le ofrece cuatro tipos de sensores de medición de presión: absoluta, diferencial, relativa y de vacío y rangos de presión desde ±1,25 kPa a 17 bar.
Sensores de temperatura
Los sensores de temperatura se catalogan en dos series diferentes: TD y HEL/HRTS. Estos sensores consisten en una fina película de resistencia variable con la temperatura (RTD) y están calibrados por láser para una mayor precisión e intercambiabilidad. Las salidas lineales son estables y rápidas.

Sensores de turbidez
Los sensores de turbidez aportan una información rápida y práctica de la cantidad relativa de sólidos suspendidos en el agua u otros líquidos. La medición de la conductividad da una medición relativa de la concentración iónica de un líquido dado.

Sensores magnéticos
Los sensores magnéticos se basan en la tecnología magnetoresisitiva SSEC. Ofrecen una alta sensibilidad. Entre las aplicaciones se incluyen brújulas, control remoto de vehículos, detección de vehículos, realidad virtual, sensores de posición, sistemas de seguridad e instrumentación médica.

Sensores de presión
Los sensores de presión están basados en tecnología piezoresistiva, combinada con microcontroladores que proporcionan una alta precisión, independiente de la temperatura, y capacidad de comunicación digital directa con PC. Las aplicaciones afines a estos productos incluyen instrumentos para aviación, laboratorios, controles de quemadores y calderas, comprobación de motores, tratamiento de aguas residuales y sistemas de frenado.
Pretendo explicar de forma sencilla algunos tipos de sensores.

Sensores de posición
Su función es medir o detectar la posición de un determinado objeto en el espacio, dentro de este grupo, podemos encontrar los siguientes tipos de captadores;

Los captadores fotoeléctricos
La construcción de este tipo de sensores, se encuentra basada en el empleo de una fuente de señal luminosa (lámparas, diodos LED, diodos láser etc...) y una célula receptora de dicha señal, como pueden ser fotodiodos, fototransistores o LDR etc.

Este tipo de sensores, se encuentra basado en la emisión de luz, y en la detección de esta emisión realizada por los fotodetectores.
Según la forma en que se produzca esta emisión y detección de luz, podemos dividir este tipo de captadores en: captadores por barrera, o captadores por reflexión.
En el siguiente esquema podremos apreciar mejor la diferencia entre estos dos estilos de captadores:


Captadores
- Captadores por barrera. Estos detectan la existencia de un objeto, porque interfiere la recepción de la señal luminosa.
- Captadores por reflexión; La señal luminosa es reflejada por el objeto, y esta luz reflejada es captada por el captador fotoeléctrico, lo que indica al sistema la presencia de un objeto.

Sensores de contacto
Estos dispositivos, son los más simples, ya que son interruptores que se activan o desactivan si se encuentran en contacto con un objeto, por lo que de esta manera se reconoce la presencia de un objeto en un determinado lugar.
Su simplicidad de construcción añadido a su robustez, los hacen muy empleados en robótica.

Captadores de circuitos oscilantes
Este tipo de captadores, se encuentran basados en la existencia de un circuito en el mismo que genera una determinada oscilación a una frecuencia prefijada, cuando en el campo de detección del sensor no existe ningún objeto, el circuito mantiene su oscilación de un manera fija, pero cuando un objeto se encuentra dentro de la zona de detección del mismo, la oscilación deja de producirse, por lo que el objeto es detectado.
Estos tipos de sensores son muy utilizados como detectores de presencia, ya que al no tener partes mecánicas, su robustez al mismo tiempo que su vida útil es elevada.

Sensores por ultrasonidos
Este tipo de sensores, se basa en el mismo funcionamiento que los de tipo fotoeléctrico, ya que se emite una señal, esta vez de tipo ultrasónica, y esta señal es recibida por un receptor. De la misma manera, dependiendo del camino que realice la señal emitida podremos diferenciarlos entre los que son de barrera o los de reflexión.

Captadores de esfuerzos
Este tipo de captadores, se encuentran basados en su mayor parte en el empleo de galgas extensométrica, que son unos dispositivos que cuando se les aplica una fuerza, ya puede ser una tracción o una compresión, varia su resistencia eléctrica, de esta forma podemos medir la fuerza que se está aplicando sobre un determinado objeto.

Sensores de Movimientos
Este tipo de sensores es uno de los más importantes en robótica, ya que nos da información sobre las evoluciones de las distintas partes que forman el robot, y de esta manera podemos controlar con un grado de precisión elevada la evolución del robot en su entorno de trabajo.

Dentro de este tipo de sensores podemos encontrar los siguientes:

- Sensores de deslizamiento:
Este tipo de sensores se utiliza para indicar al robot con que fuerza ha de coger un objeto para que este no se rompa al aplicarle una fuerza excesiva, o por el contrario que no se caiga de las pinzas del robot por no sujetarlo debidamente.
Su funcionamiento general es simple, ya que este tipo de sensores se encuentran instalados en el órgano aprehensor (pinzas), cuando el robot decide coger el objeto, las pinzas lo agarran con una determinada fuerza y lo intentan levantar, si se produce un pequeño deslizamiento del objeto entre las pinzas, inmediatamente es incrementada la presión le las pinzas sobre el objeto, y esta operación se repite hasta que el deslizamiento del objeto se ha eliminado gracias a aplicar la fuerza de agarre suficiente.

- Sensores de Velocidad:
Estos sensores pueden detectar la velocidad de un objeto tanto sea lineal como angular, pero la aplicación más conocida de este tipo de sensores es la medición de la velocidad angular de los motores que mueven las distintas partes del robot. La forma más popular de conocer la velocidad del giro de un motor, es utilizar para ello una dinamo tacométrica acoplada al eje del que queremos saber su velocidad angular, ya que este dispositivo nos genera un nivel determinado de tensión continua en función de la velocidad de giro de su eje, pues si conocemos a que valor de tensión corresponde una determinada velocidad, podremos averiguar de forma muy fiable a qué velocidad gira un motor. De todas maneras, este tipo de sensores al ser mecánicos se deterioran, y pueden generar errores en las medidas.
Existen también otros tipos de sensores para controlar la velocidad, basados en el corte de un haz luminoso a través de un disco perforado sujetado al eje del motor, dependiendo de la frecuencia con la que el disco corte el haz luminoso indicará la velocidad del motor.

- Sensores de Aceleración:
Este tipo de sensores es muy importante, ya que la información de la aceleración sufrida por un objeto o parte de un robot es de vital importancia, ya que si se produce una aceleración en un objeto, este experimenta una fuerza que tiende ha hacer poner el objeto en movimiento.
Supongamos el caso en que un brazo robot industrial sujeta con una determinada presión un objeto en su órgano terminal, si al producirse un giro del mismo sobre su base a una determinada velocidad, se provoca una aceleración en todo el brazo, y en especial sobre su órgano terminal, si esta aceleración provoca una fuerza en determinado sentido sobre el objeto que sujeta el robot y esta fuerza no se ve contrarrestada por otra, se corre el riesgo de que el objeto salga despedido del órgano aprehensor con una trayectoria determinada, por lo que el control en cada momento de las aceleraciones a que se encuentran sometidas determinadas partes del robot son muy importantes.


Características del Sensor a utilizar:

Sensores de presión en miniatura con un diafragma de silicio y un único sistema de interconexión por Sello conductor , que elimina la necesidad de Soldaduras de cables internos o conexiones de lengüeta. Se dispone de sensores manométricos y diferenciales. Las versiones diferenciales son capaces de medir entre medios húmedos, lo que permite introducir la mayoría de sustancias por ambas tomas.


















domingo, 22 de abril de 2007

Laboratorio # 1, Teoria y medición de errores

Presentación:
Antes de construir un sistema de medición es necesario conocer el proceso y la técnica asociada a la variable a medir.

Objetivos:
* Caracterizar el proceso a medir.
* Manejar la técnica de medición aplicable a la variable de interés.

Características de la variable a medir: Nivel
El nivel es una herramienta que sirve para medir la horizontalidad y verticalidad de un elemento. En este caso el elemento a medir será el agua, y se realizara mediante el uso de un sensor de presión el cual será caracterizado posteriormente.

La medición de nivel es una de las mas antiguas y mas comunes dentro de la medición de variables. Las personas han venido midiendo el nivel del agua en lagos y el de granos en silos, desde hace cientos de años.

En los ríos se media la profundidad con varas, cada determinada distancia para conocer que profundidad se tenia, de tal manera que los barcos no atracaran. Así como en la antigüedad, hasta principio de 1900 la mayoría de la medición de nivel se efectuara mediante varas con marcas colocada a intervalos regulares, permitiendo que mediante estas marcas se pudiera hacer una lectura del nivel de manera relativamente fácil.

En la industria, la medición de nivel es muy importante, tanto desde el punto de vista del funcionamiento del proceso como de la consideración del balance adecuado de materias primas de productos finales.

La utilización de instrumentos electrónicos con microprocesador en la medida de otras variables, tales como la presión y la temperatura, permite añadir “inteligencia” en la medida del nivel, y obtener precisiones de lectura altas, del orden del 0,2 %, en el intervalo de materias primas o finales o en transformación en los tanques del proceso. El transmisor de nivel “inteligente” hace posible la interpretación del nivel real (puede eliminar o compensar la influencia de la espuma en flotación del tanque, en la lectura), la eliminación de las falsas alarmas (tanques con olas en la superficie debido al agitador de paletas en movimiento), y la fácil calibración del aparato en cualquier punto de la línea de transmisión.

El transmisor o varios transmisores pueden conectarse, a través de una conexión RS-232, a un ordenador personal, que con el software adecuado, es capaz de configurar transmisores inteligentes.

El nivel es la variable que puede ser medida mas fácilmente, pero existen otros factores, tales como viscosidad del fluido, tipo de medición deseada, presión, si el recipiente esta o no presurizado, que traen como consecuencias que existan varios métodos y tipos de instrumentos medidores del nivel. El medidor de nivel seleccionado dependerá de nuestras necesidades o condiciones de operación.

Los instrumentos de nivel pueden dividirse en medidores de nivel de líquidos y de sólidos.

Caracterización del proceso
El sistema está constituido por dos tubos largos colocados en forma vertical, los cuales están llenos de un líquido; dicho líquido puede llenar a los tubos a través de una llave de paso, la cual solo se utiliza para nivelar el agua. Esta llave de paso se encuentra entre los dos tubos los cuales se interconectan entre si a través de un canal; la llave de paso intentará mantener el mismo nivel de líquido entre los dos tubos a través del fenómeno hidrostático.
Cuando se requiere hacer algún control de nivel la llave de paso se mantiene cerrada.

Para este proceso no se necesita un circuito de acondicionamiento sólo se realiza la medida con el medidor de caudal. El control del proceso se realiza en el tubo donde se encuentra ubicado el sensor de presión y nivel.

El sensor de presión se encuentra ubicado en el nivel cero, el cual es una caja constituida por dicho sensor y el circuito de acondicionamiento; a partir del nivel cero se ubica la cinta métrica que se usará para medir el nivel del agua en el tubo.

Este proceso también contiene una bomba la cual no posee comunicación directa con el tubo de medición; esta se utiliza para variar el nivel del agua en el tubo cuando la bomba es encendida, haciendo que el nivel del agua descienda, enviando esta al otro tubo. (Si este tubo se encuentra abierto está bomba se utilizará también para bajar la presión si se sobrepasa.)


Descripción del método patrón a utilizar para medir la variable
El método ha utilizar para realizar la medición de la variable es a través del proceso de hidrostática; la medición de nivel se hará con el mismo sensor con el que se hará la medición de presión. Para observar la magnitud de las distintas medidas se utilizará una cinta métrica a lo largo de ambos tubos para observar como va subiendo el nivel del agua y asociar esto a la presión detectada por el sensor a diferentes niveles de agua.


Descripción del sensor a utilizar






Características técnicas




Características del Sensor
Los sensores de presión en miniatura con un diafragma de silicio y un único sistema de interconexión por sello conductor, que elimina la necesidad de soldaduras de cables internos o conexiones de lengüeta. Se dispone de sensores manométricos y diferenciales. Las versiones diferenciales son capaces de medir entre medios húmedos, lo que permite introducir la mayoría de sustancias por ambas tomas.

• Calibración de la señal de salida, tanto en cero como a fondo de escala

• Compensación de temperatura, por lo que pueden ser remplazados sin necesidad de una calibración

• Idóneos para aplicaciones que requieran una medida exacta de presión, así como repetibilidad, baja histéresis y estabilidad a largo plazo

• Se suministra con anillo de bloqueo en acero



Arquitectura del Sistema de Medida, aplicando Margen Dinámico, resolución, Ganancia y número de bits del conversor.




De acuerdo con esto el sistema nos queda: